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Abstract
Kernel methods have been widely applied in machine learning to solve complex nonlinear
problems. Kernel selection is one of the key issues in kernel methods, since it is vital for
improving generalization performance. Traditionally, the selection of kernel is restricted to
be positive definite which makes their applicability partially limited. Actually, in many real
applications such as gene identification and object recognition, indefinite kernels frequently
emerge and can achieve better performance. However, compared to positive definite ones,
indefinite kernels are more complicated due to the non-convexity of the subsequent opti-
mization problems, which leads to the incapability of most existing kernel algorithms. Some
indefinite kernel methods have been proposed based on the dual of support vector machine
(SVM), which mostly emphasize on how to transform the non-convex optimization to be
convex by using positive definite kernels to approximate indefinite ones. In fact, the duality
gap in SVM usually exists in the case of indefinite kernels and therefore these algorithms do
not indeed solve the indefinite kernel problems themselves. In this paper, we present a novel
framework for indefinite kernel learning derived directly from the primal of SVM, which
establishes several new models not only for single indefinite kernel but also extends to mul-
tiple indefinite kernel scenarios. Several algorithms are developed to handle the non-convex
optimization problems in thesemodels.We further provide a constructive approach for kernel
selection in the algorithms by using the theory of similarity functions. Experiments on real
world datasets demonstrate the superiority of our models.

Keywords Indefinite kernel · Primal problem · Multiple kernel learning · Machine learning

1 Introduction

Kernel methods have been extensively used in a variety of learning tasks with the successful
applications of the best known paradigm support vector machine (SVM) [50]. They work
through mapping the input data into a high-dimensional (possibly infinite-dimensional) fea-
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ture space [4], in order to transform nonlinear learning problems in the original feature space
into tractable linear ones which can be easily solved by linear learning machines. Kernels are
introduced by replacing the inner products on all pairs of the mapping data and actually act
as the mapping [4]. By using the kernels, these methods can avoid explicitly representing the
mapping and thus the possible curse of dimensionality caused by the numerical calculation
in the high-dimensional mapping space.

Kernel selection is one of the key issues in kernel methods, which directly affects whether
an appropriate mapping space can be found and thus influences the generalization perfor-
mance. Following the classical statistical learning theory, so-selected kernels require to be
(conditionally) positive definite (PD) and satisfy the Mercer’s condition, in order to ensure
the existence of a reproducing kernel Hilbert space (RKHS) and lead to convex formulations
for the optimization problems [4]. As a result, the corresponding algorithms can converge to
global optima.

In practice, however, such requirement turns out to be too strict [17]. Actually, standard PD
kernels are inapplicable in many situations [41] such as suboptimal optimization procedures
for measure derivation [42], partial projections or occlusions [26], and context-dependent
alignments or object comparisons [46]. On the contrary, indefinite kernels have increasingly
emerged and shown much better performance [3,25,31,33,49]. Liu utilized an indefinite
fractional power polynomial kernel in kernel principal component analysis (KPCA) in face
recognition, which achieves higher recognition accuracies than the KPCA using PD poly-
nomial kernels [32]. Liwicki et al. applied an indefinite robust gradient-based kernel in an
incremental KPCA algorithm for visual tracking, leading to more efficient and exact results
[34].

Furthermore, there are some other situations inwhich, although PD kernels can be applied,
indefinite kernels more often appear due to in which additional problem-specific prior knowl-
edge is integrated and boost the learning-performance of problems at hand [54]. Xue et al.
embedded discriminative and structural information of data to the traditional regularization
framework and thus deduced an indefinite discriminative regularization term for classifica-
tion [24,51,55]. Ackermann et al. introduced several problem-dependent non-metric distance
measures into k-median clustering and proposed indefinite kernel clustering algorithms [1].
Haasdonk and Pkalska presented indefinite kernel discriminant analysis methodswith aiming
to incorporate the invariance into feature extraction problems [18,19].

In past few years, indefinite kernels have attracted more and more attention in machine
learning community. However, compared to PD ones, indefinite kernels are more complex.
Thanks to the loss of the PD-ness of the kernels, the corresponding optimization problems
built on them are more likely non-convex which result in most of existing PD kernel methods
inapplicable. Recently, some indefinite kernel algorithms have been developed for solving
such problem. One simplest way is to convert into a corresponding positive semi-definite
kernel matrix by transforming the spectrum of the indefinite kernel matrix [7], including
“Clip” which sets the negative eigenvalues to zeros [43], “Flip” which flips the sign of the
negative eigenvalues [15], and “Shift” which shifts the eigenvalues by a positive constant
[47]. However, such methods actually change indefinite kernels themselves forcibly. A few
other works use the indefinite kernel matrix directly and formulate as variant optimization
problems from standard PD kernel methods. Haasdonk executed indefinite kernel SVM by
minimizing the distances between convex hulls in pseudo-Euclidean space [17]. Ong et al.
extended the common inner product in RKHS to a reproducing kernel Kreı̌n space (RKKS),
where the product associated with the indefinite kernel can be negative and a more general
representer theorem is derived and met accordingly [38].
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Another more sophisticated mode of handling indefinite kernels is to convert the asso-
ciated non-convex optimization into a convex one. Specially, the indefinite kernel matrix is
considered as the noisy observation of some unknown positive semi-definite one and then
approximated by learning a proxy PD kernel. Luss and d’Aspremont proposed a dual model
of SVM with an additional regularization term which measures the similarity between the
proxy and the original indefinite kernel matrices and then quadratically smoothed the result-
ing non-differentiable objective for optimization, consequently yielding the two optimization
algorithms, i.e., the project gradient method and the analytic center cutting plan method to
simultaneously learn the support vectors as well as the proxy kernel [36]. Chen andYe further
reformulated such an objective as a semi-infinite quadratically constrained linear program
which can ensure convergence to a global optimum [7]. Ying et al. verified that the objective
involved is continuously differentiable and its gradient is Lipschitz continuous, and then used
Nesterov’s smooth optimization method with achievable optimal convergence rate [57]. Gu
and Guo reformulated the common KPCA as a general kernel transformation framework and
then incorporated it into the SVM classification to formulate a joint optimization model for
solving indefinite kernel SVM problems, which can make consistent kernel transformations
over training and testing samples [16]. Loosli et al. [35] extended indefinite kernel into a
Reproducing Kernel Kreı̌n Space (RKKS) and tried to obtain a stabilized solution for the
indefinite kernel problem. However, these methods are basically designed based on the dual
of SVM rather than the original non-convex primal problem. In fact, the duality gap between
the two problems usually exists in the case of indefinite kernels, which leads to the difference
between their solutions. As a result, such methods actually do not indeed solve the problem
of indefinite kernel SVM itself.

In this paper, we propose a novel SVM framework for indefinite kernel learning. The main
contributions of this paper include:

• We focus on the indefinite kernel SVM problem itself and thus derive the framework
directly from theprimal.Considering the particularity of indefinite kernels, the framework
is constructed on the larger RKKS (than RKHS) and the corresponding solutions satisfy
the generalized representer theorem in the RKKS.

• In the framework, we not only establish a primal model for single indefinite kernel, but
also extend it to multiple indefinite kernel scenarios. Based on different properties of base
kernels and combination coefficients, we further provide a generalized multiple kernel
learning framework that not only covers common multiple PD kernel methods, but also
deduces two novel non-convex multiple indefinite kernel models which emphasize on
the convex combination of indefinite base kernels and the non-convex combination of
PD base kernels respectively.

• According to the single indefinite kernel model, we present an algorithm using Polak-
Ribiere-Polyak (PRP) conjugate gradient. In the multiple indefinite kernel models, a
two-stage algorithm is further developed to optimize both the SVM parameters and
combination coefficients alternately.

• A constructive approach for kernel selection in the algorithms is further provided by
using more general theory of similarity functions. Systematic experiments demonstrate
that our models can show much better performance than related methods in real world
applications.

The rest of the paper is organized as follows. Section2briefly analyzes the duality gap in the
case of indefinite kernels. The primalmodel for single indefinite kernel and the corresponding
algorithm are discussed in Sect. 3. Section 4 extends the framework to multiple indefinite
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kernels. Further discussion for the models is presented in Sect. 5. In Sect. 6, systematically
experimental comparisons are conducted. Some conclusions are drawn in Sect. 7.

2 Dual Gap

Given a training set {xi , yi }ni=1 ∈ Rm × {±1}, the primal formulation of soft margin SVM
classification is given by

min
w,b,ξ

f (w, b, ξ) = λ
2 〈w,w〉 +

n∑

i=1
ξi

s.t . yi (〈w, xi 〉 + b) ≥ 1 − ξi ξi ≥ 0, i = 1, . . . , n
(1)

and the associated dual problem is

max
α

n∑

i=1
αi − 1

2

n∑

i, j=1
αiα j yi y j

〈
xi , x j

〉

s.t . αT y = 0 0 ≤ αi ≤ 1/λ, i = 1, . . . , n
(2)

where α = [α1, · · · , αn]T and y = [y1, · · · , yn]T are the vectors of Lagrange dual variables
and class labels respectively. λ is a pre-specified parameter.

When the data are linear inseparable, we usually embed them into a high-dimensional
feature space by using a kernel function instead of the inner products on all pairs of the
embeddings. As a result, the dual of kernel SVM can be further formulated as

max
α

n∑

i=1
αi − 1

2

n∑

i, j=1
αiα j yi y j K (xi , x j )

s.t . αT y = 0 0 ≤ αi ≤ 1/λ, i = 1, . . . , n
(3)

where K (·, ·) a kernel function.
Let the feasible region of the primal problem (1) be

S = {yi (〈w, xi 〉 + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , n}
Then the Lagrangian

L(α, γ ,w, b, ξ) = f (w, b, ξ) −
n∑

i=1

αi [yi (〈w, xi 〉 + b) − 1 + ξi ] −
n∑

i=1

γiξi (4)

can be viewed as a function with (w, b, ξ) ∈ S and (α, γ ) ∈ � = Rn+ × Rn+.
Define the objective function associated with the primal problem (1) as

LP (w, b, ξ) = sup
(α,γ )∈�

L(α, γ ,w, b, ξ) (5)

and the dual function as

LD(α, γ ) = inf
(w,b,ξ)∈S

L(α, γ ,w, b, ξ) (6)

As a result, the two optimization problems can boil down to

min
(w,b,ξ)∈S

L P (w, b, ξ)
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and

max
(α,γ )∈�

LD(α, γ )

Obviously, for every (α, γ ) ∈ � and (w, b, ξ) ∈ S, we have

LD(α, γ ) ≤ LP (w, b, ξ)

So the goal of the dual problem is to find the best (maximum) lower bound of the primal
[48]. And the corresponding difference between the two problems is called duality gap

δ = min
(w,b,ξ)∈S

L P (w, b, ξ) − max
(α,γ )∈�

LD(α, γ ) ≥ 0 (7)

In terms of PD kernels, the primal and dual problems are typical convex quadratic pro-
gramming optimizations. In such case, the optimal solutions of the two problems (w∗, b∗, ξ∗)
and (α∗, γ ∗) will constitute a point (w∗, b∗, ξ∗,α∗, γ ∗) of the Lagrangian satisfied

max
(α,γ )∈�

L(w∗, b∗, ξ∗,α, γ ) = L(w∗, b∗, ξ∗,α∗, γ ∗)

= min
(w,b,ξ)∈S

L(w, b, ξ ,α∗, γ ∗) (8)

Consequently, the duality relationship holds true

min
(w,b,ξ)∈S

L P (w, b, ξ) = max
(α,γ )∈�

LD(α, γ ) (9)

and the corresponding duality gap is zero [48]. In this situation, we can seek the solution
to the primal by firstly solving the dual to get (α∗, γ ∗) and then determining the solution
(w∗, b∗, ξ∗).

However, in terms of indefinite kernels, the primal and dual problems become non-convex,
which leads to such point non-existent. As a result, the duality relationship (9) is not valid
any longer [48]. The dual problem can only be used to bound the solution of the primal from
LD(α, γ ) ≤ LP (w, b, ξ).

In other words, the optimizations of the primal and dual problems are actually not equiv-
alent in indefinite kernel SVM. A more reasonable way is directly learning from the primal.

3 Primal Framework for Single Indefinite Kernel

In this section, we firstly derive a primal model for single indefinite kernel and then present
the corresponding optimization algorithm. The whole model is founded in the RKKS [38].

3.1 Model Construction

We rewrite the primal SVM problem (1) as an unconstrained optimization problem [6,37]:

min
w,b

λ 〈w,w〉 +
n∑

i=1

V (yi , 〈w, xi 〉 + b) (10)

where V (·) is a loss function.
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Now let us consider the nonlinear SVM with an indefinite kernel which induces a RKKS
K̃ . The optimization problem (10) becomes

min
f∈K̃ ,b

λ〈 f , f 〉K̃ +
n∑

i=1

V (yi , f (xi ) + b) (11)

In the RKKS, the solution to the problem of minimizing a regularized risk functional still
admits a similar representation in terms of an expansion over the training samples to the
RKHS.

Theorem 1 (RepresenterTheorem) [38]Let K̃ beanRKKSwith kernelK.Denote by V ( f ,X )

a continuous convex loss functional depending on f ∈ K̃ only via its evaluations f (xi ) with
xi ∈ X , let �(〈 f , f 〉) be a continuous stabilizer with strictly monotonic � : R → R
and let C { f ,X } be a continuous functional imposing a set of constraints on f , that is
C : K̃ × X → R. Then if the optimization problem1

stabili ze
f∈K̃

V ( f ,X ) + �
(〈 f , f 〉K̃

)

s.t . C { f ,X } ≤ ζ

has a saddle point f ∗, it admits the expansion f ∗ =
n∑

i=1
βi K (xi , ·) where xi ∈ X and

βi ∈ R.

Consequently, the primal model of single indefinite kernel can be further expressed as

min
β,b

λβT Kβ +
n∑

i=1

V
(
yi , K iβ + b

)
(12)

where K is the indefinite kernel matrix with K i j = K (xi , x j ) and K i is the ith row of K .
It is worth noting that the coefficients βi are not αi in the optimization (2), and thus should
not be interpreted as Lagrange multipliers. In fact, the main difference between them is the
value range: αi are required to be non-negative but such requirement is inapplicable to βi .
Furthermore, for the solution β∗ of (12), the corresponding support vector set is

SV s = {
xi ∈ X s.t . V

(
yi , K iβ∗ + b

) 	= 0
}

that is, the samples which let the loss function not equal to zero.

3.2 Optimization Algorithm

We select the smooth quadratic hinge loss function as V (·), which can make the primal
continuous and differentiable in f and so in β [6,37]. Note that if K is not symmetric, let
K = (K+K T )/2. So the optimization problem after adding the scaling constant 1/2 becomes

min
β,b

1

2

[

λβT Kβ +
n∑

i=1

max
(
0, 1 − yi

(
K iβ + b

))2
]

(13)

Although (13) is much similar to the traditional primal PD kernel SVM problem, it is
actually an unconstrained non-convex optimization in terms of indefinite kernels which is
an NP-hard problem. Fortunately, some state-of-the-art techniques can still be applied, but

1 Here “stabilize” means finding a stationary point in a RKKS.
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Algorithm 1 PRIMAL SINGLE INDEFINITE KERNEL SVM (PRIMAL IKSVM)

1: Initial : z(0) = 0 ∈ R(n+1), d(0) = −∇(0) = −[y; sum(y)], t = 0
2: while stopping criterion not met do
3: t = t + 1;
4: Find the optimal step s∗ by exact Newton line search:
5: s∗ = min

s
F(z(t−1) + s × d(t−1));

6: Update z(t) = z(t−1) + s∗ × d(t−1);
7: Compute the descent direction d(t):
8: SV = {xi ∈ X s.t.yi f (xi ) < 1};
9: ∇(t) =

[
λfi + ISV (Kfi + 1b) − ISV y
1T ISV (Kfi + 1b) − 1T ISV y

]

;

10: ∇̂(t) = P × ∇(t);

11: ρ = max(0, ∇̂(t)T (∇(t)−∇(t−1))

∇̂(t−1)T ∇(t−1) );

12: d(t) = −∇(t) + ρ × d(t−1);
13: end while

they will reach local minima [52]. Here we adopt the conjugate gradient with PRP iteration
formula that has shown empirically better performance in solving primal SVM problems
[37].

More specifically, we firstly compute the gradients of the variables β and b by (13)

∇ =
[∇β

∇b

]

=
⎡

⎣
λKβ + ∑

i∈SV
(1 − yi (K iβ + b))(−yi K i )

∑

i∈SV
(1 − yi (K iβ + b))(−yi )

⎤

⎦

=
[

λKβ + K I SV (Kβ + 1b) − K I SV y
1T I SV (Kβ + 1b) − 1T I SV y

]

=
[
K 0
0T 1

]

×
[

λβ + I SV (Kβ + 1b) − I SV y
1T I SV (Kβ + 1b) − 1T I SV y

]

(14)

where 1 ∈ Rn and 0 ∈ Rn are the vectors whose elements are all equal to one and zero respec-
tively. I SV ∈ Rn×n denotes a diagonal matrix whose elements along the primal diagonal
non-zero (equal to one) only correspond to the position of support vectors at the current iter-

ation. In particular, let the matrix P =
[
K 0
0T 1

]

as a preconditioner which can be computed

in advance to avoid calculating repeatedly in the iterations [21,37].
Then we apply conjugate gradient to compute descent direction

d(t) = −∇(t) + ρ × d(t−1)

where ρ is updated by PRP formula

ρ = ∇̂(t)T (∇(t) − ∇(t−1))

∇̂(t−1)T∇(t−1)

Once the direction is found, we use exact Newton line search to find the optimal step and
further update the variables β and b.

Let z = [βT b]T and F(·) denotes the objective function. The stopping criterion used in
the algorithm is the difference between two adjacent iteration values of the quadratic hinge
loss function less than 10−6. The whole algorithm can be summarized in Algorithm 1.

Complexity AnalysisWe investigate each step of the algorithm. Detailedly, the exact New-
ton line search for the optimal step leads to a complexity of O(n2). The search process for
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support vectors also has the complexity O(n2). The computation of the descent direction
by conjugate gradient is with a complexity of O(nnSV ), where nSV denotes the number of
support vectors. Consequently, the algorithm at most has the complexity of O(n2).

4 Primal Framework for Multiple Indefinite Kernel

Many previous studies have shown it is not reasonable that using a single kernel to map all
samples, especially when the samples contain heterogeneous information [40] or distribute
non-flatly in high-dimensional feature space [58].Multiple kernel learning (MKL) [20,22,23,
53] utilizes a combination of multiple base kernels instead of a single kernel to mix multiple
source information, and thus has been regarded as a promising technique to improve the
performance of kernel methods effectively [8,9,14,27,28,56]. Particularly, some recent state-
of-the-art works have presented many different MKL algorithms from different perspectives.
Aiolli and Donini utilized the kernel optimization of the margin distribution technique and
proposed a scalable MKL algorithm named easyMKL which combines large sets of base
kernels by solving a simple quadratic problem [2]. Furthermore, they combined a hierarchy
of base kernels with easyMKL to generate overall deeper kernels [10]. Fan et al. incorporated
the locality preserving projection into multiple empirical kernel learning framework and
proposed a lower generalization error bound algorithm [12]. Then they further proposed a
multiple random empirical kernel learning machine to deal with large-scale problems which
has good efficient performance in both computation and memory [13].

Consequently, we further extend the proposed primal framework to multiple indefinite
kernel scenarios. To the best of our knowledge, this is more likely the first attempt to indeed
fuse indefinite kernelswithMKL.Ong et al. constructed a hyperkernel in aRKHSon the space
of kernels itself which can be expressed as a non-convex linear combination of PD kernels
[39]. However, in order to make the kernel matrix positive semi-definite out of easily being
solved, they actually imposed extra non-negative constraints on the combination coefficients.
Hinrichs et al. presented a Q-MKLmethod in which though base kernels can be allowed to be
indefinite, their combined kernel is still confined to be PD by imposing necessary constraints
[22]. Kowalski et al. proposed a multiple kernel algorithm involving indefinite kernels [29].
However, the algorithm more emphasizes on using the mixed norm regularization to reach
better sparsity rather than multiple indefinite kernel learning itself.

4.1 Model Construction

In this subsection, we firstly present a generalized MKL framework and then derive two
primal multiple indefinite kernel models. Based on the single kernel model (11), the multiple
kernel model can be uniformly formulated as

min
f∈K̃μ,μ∈�,b

λ 〈 f , f 〉K̃μ
+

n∑

i=1

V (yi , f (xi ) + b) (15)

where K̃μ is aRKKSparameterized byμ, which is endowedwith kernel function K (·, ·,μ) =
∑M

j=1 μ j K j (·, ·). {K j (·, ·)}Mj=1 is a group of base kernels allowed to be indefinite. In addi-
tion, we also extend the coefficients μ from the convex combination commonly required in
traditional MKL methods
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Table 1 Generalized MKL
framework

K j (·, ·)PD K j (·, ·)Indefinite
�1 I II

�2 III IV

�1 = {μ ∈ RM+ :
M∑

j=1

μ j = 1, μ j ≥ 0}

to the non-convex combination

�2 = {μ ∈ RM : |μ j | ≤ c, c ∈ R+}
In order to avoid degradation, an absolute value constraint is imposed to μ j . c is a positive
constant.

Consequently, based on different properties of base kernels and combination coefficients,
we can naturally generate a generalized MKL framework which classifies multiple kernel
models into four categories, as shown in Table 1.

Most existing multiple PD kernel methods fall in Category I. Category IV actually is
involved in Category II, since the minus sign of μ j can be absorbed into the base kernel
functions, doing so can not change the indefiniteness of the kernels, but can convert μ j to be
positive.

Categories II and III deduce two new primal multiple indefinite kernel models, termed as
Primal MIKSVM-1 and Primal MIKSVM-2, which expand base kernels and combination
coefficients respectively.

Concretely, Primal MIKSVM-1 focuses on the convex combination of indefinite base
kernels

min
f∈K̃μ,μ,b

λ

M∑

j=1

μ j
〈
f j , f j

〉
K̃ j

+
n∑

i=1

V

⎛

⎝yi ,
M∑

j=1

μ j f j (xi ) + b

⎞

⎠

s.t .
M∑

j=1

μ j = 1, μ j ≥ 0

(16)

By the Representer Theorem, we have f ∗
j (x) = ∑n

i=1 βi K j (xi , x). So the model (16)
can be further formulated as

min
β,μ,b

λβT Kβ +
n∑

i=1

V (yi , K iβ + b)

s.t . K =
M∑

j=1

μ j K j , K i =
M∑

j=1

μ j K i
j

M∑

j=1

μ j = 1, μ j ≥ 0

(17)

where K j is the indefinite base kernel matrix and K i
j is the i th row of K j .

123



174 H. Xue et al.

Primal MIKSVM-2 emphasizes on the non-convex combination of PD base kernels:

min
f∈K̃μ,μ,b

λ

M∑

j=1

μ j
〈
f j , f j

〉
K̃ j

+
n∑

i=1

V (yi ,
M∑

j=1

μ j f j (xi ) + b)

s.t . |μ j | ≤ c, j = 1, . . . , M

(18)

Following the same deduction as (17), the model of Primal MIKSVM-2 can finally boil
down to

min
β,μ,b

λβT Kβ +
n∑

i=1

V (yi , K iβ + b)

s.t . K =
M∑

j=1

μ j K j , K i =
M∑

j=1

μ j K i
j

|μ j | ≤ c, j = 1, . . . , M

(19)

It isworth to point out that single indefinite kernelmodel Primal IKSVMandmostmultiple
PD kernel methods are in fact special cases of Primal MIKSVM-1 and Primal MIKSVM-2
respectively, while the constraints degenerate to accord with their specific learning scenarios.
In this sense, Primal MIKSVM-1 and Primal MIKSVM-2 are more general and thus more
likely possess better adaptability to complex applications.

4.2 Optimization Algorithm

We also choose the quadratic hinge loss function as V (·). Adding the scaling constant 1/2,
the two models become

min
β,μ,b

1

2

[

λβT Kβ +
n∑

i=1

max(0, 1 − yi (K iβ + b))2
]

s.t . K =
M∑

j=1

μ j K j , K i =
M∑

j=1

μ j K i
j

M∑

j=1

μ j = 1, μ j ≥ 0

(20)

and

min
β,μ,b

1

2

[

λβT Kβ +
n∑

i=1

max(0, 1 − yi (K iβ + b))2
]

s.t . K =
M∑

j=1

μ j K j , K i =
M∑

j=1

μ j K i
j

|μ j | ≤ c, j = 1, . . . , M

(21)

Let z = [
βT b

]T
. Different from Primal IKSVM, here we have to optimize two variables

the combination coefficients μ and SVM parameters z. Notice that one difference between
the models (20) and (21) is the constraints on μ j . When μ j is fixed, the two problems will
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degenerate to the same single kernelmodel. Therefore, hereweutilize a two-stage algorithm to
find the two variables alternately. The global Primal MIKSVM algorithm can be summarized
in Algorithm 2, where the stopping criterion is the same as the one in Algorithm 1.

In each iteration, when fixing the coefficients μ , we use Algorithm 1 to solve the SVM
parameters z. When fixing z, we employ the projected gradient descent method to solve the
optimal μ.

Algorithm 2 Primal multiple indefinite kernel SVM (Primal MIKSVM)

1: Initial: z(0) = 0 ∈ R(n+1), d(0) = −∇(0) = −[ y; sum( y)], μ(0)
j = 1/M, t = 0

2: while stopping criterion not met do
3: t = t + 1;
4: Find the optimal step s∗ by exact Newton line search:
5:

s∗ = min
s

F(z(t−1) + s × d(t−1));
6: Update z(t) = z(t−1) + s∗ × d(t−1);
7: Optimize the combination coefficients μ;
8: Compute K = ∑M

j=1 μ j K j ;

9: Compute the descent direction d(t);
10: end while

While the gradient

∇μ j = λ

2
βT Kβ +

∑

i∈SV
(1 − yi (K iβ + b))(−yi K i

jβ)

has been computed,μ is updated by the gradient descent. In order to achieve faster optimiza-
tion, we further utilize Nesterov’s optimal gradient algorithm [21] to accelerate the gradient
descent.

Since the feasible sets of μ are different in Primal MIKSVM-1 and Primal MIKSVM-2,
here we use different strategies to ensure the descent direction projecting in the appropriate
feasible set in each iteration. More specifically, Primal MIKSVM-1 executes the simplex
constraint on μ, and thus l1-ball projection method [11] is used as shown in Algorithm 3.

Algorithm 3 Simplex projection

1: Input: A vector μ(t) ∈ RM

2: Sort μ(t) into v such that v1 ≥ v2 · · · ≥ vM ;
3: Find ρ = max{i ∈ [1 : M] : vi − 1/i · (

∑i
r=1 vr − 1) ≥ 0};

4: Compute θ = 1/ρ · (
∑i

r=1 vr − 1);

5: Output μ
(t)
newi : μ

(t)
newi = max(0, μ(t)

i − θ), i ∈ [1 : M]

Correspondingly, PrimalMIKSVM-2 implements the box constraint onμwhich is simpler
than that in Primal MIKSVM-1. We check the elements one by one to guarantee them
satisfying the absolute value constraint, as depicted in Algorithm 4.

Complexity Analysis As in Algorithm 1, the exact Newton line search for the optimal
step leads to a complexity of O(n2). The optimization of the combination coefficients μ

by projected gradient descent has the complexity O(Mn2). The computation of the SVM
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Algorithm 4 Box projection

1: Input: A vector μ(t) ∈ RM

2: Check every element of μ(t);

3: if μ
(t)
i ≥ 0

4: let μ(t)
newi = min(c, μ(t)

i );
5: else
6: let μ(t)

newi = max(−c, μ(t)
i );

7: Output: μ
(t)
newi

parameters z by conjugate gradient is with a complexity of O(n2). As a result, the complexity
of the whole algorithm is at most O(Mn2).

5 Algorithm Analysis on Kernel

In common kernel algorithms, the kernel is usually selected by cross-validation from a series
of candidate kernels. In this section, we will provide a constructive approach about how to
select an appropriate kernel in our algorithms. Due to the particularity of indefinite kernels
which dissatisfy the common Mercer’s conditions, many state-of-the-art theoretical conclu-
sions about PD kernel methods to being invalid in indefinite kernel models. However, from
a broader perspective, both PD and indefinite kernels can actually be regarded as similarity
functions. As a result, a more general theory of learning with similarity functions [5] can
provide us a feasible way to select kernels effectively.

The theory starts from what a “good similarity function” for a given learning problem.
Without loss of generality, here we consider the pairwise similarity function K (x, x′) map-
ping pairs of samples to numbers in the range [−1, 1]. Intuitively, K is an (ε, γ )-good
similarity function for a learning problem P if at least a 1− ε probability mass of examples
x satisfy

Ex′∼P [K (x, x′)|y(x) = y(x′)] ≥ Ex′∼P [K (x, x′)|y(x) 	= y(x′)] + γ (22)

Balcan et al. further presented a formal definition on a “good similarity function” in the
first-order hinge loss [5]. However, due to the non-convexity of our models, here we adopt the
smooth quadratic hinge loss in the objective functions out of easily being optimized. So we
firstly generalize the definition from the first-order hinge loss to the quadratic one as follows

Definition 1 A similarity function K is an (ε, γ )-good similarity function in quadratic hinge
loss for P if there exists a weighting function w(x′) ∈ [0, 1] for all x′ ∈ X such that

Ex[[1 − y(x)g(x)/γ ]2+] ≤ ε (23)

where g(x) = Ex′∼P [y(x′)w(x′)K (x, x′)] is the similarity-based prediction made using
w(·), and [1 − z]2+ = max(0, 1 − z)2 is the quadratic hinge loss.

For a single kernel, an (ε, γ )-good similarity function K can ensure that given a certain
amount of samples, there exists a separator with low-error and large margin in the space
induced by K .

Theorem 2 (Single Kernel) Let K be an (ε, γ )-good similarity function in quadratic hinge
loss for P . For any ε1 > 0 and 0 < δ < 3ε21γ

2/16, let S = {x̂1, · · · , x̂n} be a sample set
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with the size n = 16 log(1/δ)/(ε1γ )2 drawn from P . Consider the mapping φs : X → Rn

defined as follows
φs
i (x) = K (x, x̂i )/

√
n, i ∈ {1, · · · , n}

With probability at least 1− δ over the random sample S, the induced distribution φS(P) in
Rn has a separator achieving hinge-loss at most ε + ε21 at margin γ .

Theorem 2 extends Theorem 4 in [5] to the quadratic hinge loss scenario. Assume that the
kernel K is an (ε, γ )-good similarity function, the theorem has shown that we more likely
obtain (with probability at least 1 − δ) a predictor in the φS-space induced by K with error
rate ε + ε21 . A subsequent problem arises naturally: how to find such a kernel satisfied that it
is an (ε, γ )-good similarity function.

In fact, following the proof of Theorem 4 in [5], let w(x′
i ) = √

nβi/y(x′
i ), we have

g(x) = Ex′∼P [y(x′)w(x′)K (x, x′)] =
n∑

i=1

√
n piβi K (x, x′

i )

where pi is a prior distribution for x′
i ,

∑n
i=1 pi = 1. We uniformly set pi = 1/n, then

g(x) = 1√
n

n∑

i=1

βi K (x, x′
i ) = 1√

n
K iβ (24)

For a given problem P , substituting (24) into (23), we obtain

Ex∼P [[1 − y(x)g(x)/γ ]2+] =
n∑

i=1

p′
i max(0, 1 − 1√

n
yi K iβ/γ )2

Let γ = 1/
√
n and p′

i = 1/n, then

Ex∼P [[1 − y(x)g(x)/γ ]2+] = 1/n
n∑

i=1

max(0, 1 − yi K iβ)2

So far, the problem has been transformed into looking for an appropriate kernel to satisfy
the value of the quadratic hinge loss less than a small threshold ε. However, for various
learning problems, ε is actually difficult to determine in advance. If ε is set larger, there are
more likely many kernels satisfied the loss less than ε. On the contrary, if ε is set smaller, it
is possibly hard to find a suitable kernel especially in indefinite kernel scenarios. So in our
experiments, we turn to take another approach instead of setting ε beforehand.

Specifically in single kernel scenarios, given a candidate indefinite kernel set, we use
Algorithm 1 Primal IKSVM to train a classifier for each candidate kernel. When our stopping
criterion arrives, the difference between the values of the quadratic hinge loss in two adjacent
iterations is already very small, that is to say, the value of the quadratic hinge loss is relatively
stable. Considering the non-convexity of our model, we run the algorithm by ten-fold cross-
validation. In each fold, the smallest value of the quadratic hinge loss is set to be our ε, and
then a possible “best” kernel is determined by ε. After ten folds, the final kernel is selected
from the ten possible “best” kernels by voting.

In multiple kernels scenarios, we adopt the similar strategy to learn the combination
coefficients and thus the obtained kernel combination K = ∑M

j=1 μ j K j is more likely an
(ε, γ )-good similarity function.We can easily generalize the similar conclusion in Theorem 2
toPrimalMIKSVM-1which emphasizes on the convex combination of indefinite base kernels
K1, · · · , KM , and further analyze its generalization performance.
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Theorem 3 (Convex Combination of Multiple Kernels) Suppose K1, · · · , KM are similar-
ity functions such that some (unknown) convex combination of them K = ∑M

j=1 μ j K j

is (ε, γ )-good in quadratic hinge loss. If one draws a set S = {x̂1, · · · , x̂n} from
P containing n = 16 log(1/δ)/(ε1γ )2 instances, then with probability at least 1 −
δ, the mapping φS : X → RMn defined as φS(x) = ρS(x)/

√
Mn, ρS(x) =

(K1(x, x̂1), · · · , K1(x, x̂n), · · · , KM (x, x̂1), · · · , KM (x, x̂n) has the property that the
induced distribution φS(P) in RMn has a separator achieving hinge-loss at most ε + ε21
at margin γ /(‖μ‖√M).

Different from Primal MIKSVM-1, Primal MIKSVM-2 considers the non-convex com-
bination of PD base kernels. Without loss of generality, we restrict the absolute value of
each combination coefficient yielding |μ j | ≤ 1/M, j = 1, · · · , M and obtain Theorem 4 as
below

Theorem 4 (Non-convex Combination of Multiple Kernels) Suppose K1, · · · , KM are
similarity functions such that some linear combination of them K = ∑M

j=1 μ j K j is (ε, γ )-
good in quadratic hinge loss, where |μ j | ≤ 1/M, j = 1, · · · , M. If one draws a set
S = {x̂1, · · · , x̂n} from P containing n = 16 log(1/δ)/(ε1γ )2 instances, then with prob-
ability at least 1 − δ, the mapping φS : X → RMn defined as φS(x) = ρS/

√
(Mn),

ρS(x) = (K1(x, x̂1), · · · , K1(x, x̂n), · · · , KM (x, x̂1), · · · , KM (x, x̂n) has the property
that the induced distribution φS(P) in RMn has a separator achieving hinge-loss at most
ε + ε21 at margin γ .

Proof Performing the mapping φ̂S(x) : X → Rn , defined as φ̂S(x) = ρ̂S(x)/
√
n, ρ̂S =

(K (x, x̂1), · · · , K (x, x̂n)), where K (x, x̂) = ∑M
j=1 μ j K j (x, x̂).

Following Theorem 2, with probability 1− δ, the induced distribution φ̂S(x) in Rn would
have a separator achieving hinge-loss at most ε + ε21 at margin at least γ . Let β̂ ∈ Rn be the
vector corresponding to such a separator. So with probability 1 − δ, we have

Ex∼P [[1 − y(x)g(x)/γ ]2+] ≤ ε + ε21

In other words, with probability 1 − δ, the separator follows

Ex∼P [y(x)
〈
β̂, φ̂S(x)

〉
≥ γ ] > 1 − (ε + ε21) (25)

where ‖β̂‖ ≤ 1, ‖φ̂S(x) ≤ 1‖.
Now let us convert β̂ into a vector in RMn by replacing each coordinate β̂i with the M

values (μ1β̂i , · · · , μM β̂i ). Denote the resulting vector as β̄. Note that for any x, we have
〈
β̄, φS(x)

〉
= 1/

√
M ·

〈
β̂, φ̂S(x)

〉
(26)

We substitute (26) into the inequality (25). So with probability 1−δ, the separator in RMn

has
Ex∼P [y(x)

〈
β̄, φS(x)

〉
≥ γ /

√
M] > 1 − (ε + ε21)

For ‖β̄‖ = ‖μ‖‖β̂‖ = ‖β̂‖
√∑M

j=1 μ2
j ≤ ‖β̂‖

√∑M
j=1 1/M

2 = ‖β̂‖/√M ≤ 1/
√
M

and ‖φS(x)‖ ≤ 1, we further obtain

Ex∼P

[
y(x)

〈
β̄, φS(x)

〉

‖β̄‖‖φS(x)‖ ≥ γ

]

> 1 − (ε + ε21)
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That is, with probability 1 − δ, the separator in RMn actually has

Ex∼P

[

[1 − y(x)
〈
β̄, φS(x)

〉

‖β̄‖‖φS(x)‖ /γ ]2+
]

≤ ε + ε21

In conclusion, the induced φS(P) in RMn has a separator achieving hinge-loss at most
ε + ε21 at margin γ .

6 Experiments

To evaluate the effectiveness of the proposed models, we perform a series of experiments
systematically on several realworld classification problems, including somecommondatasets
from UCI, IDA and USPS databases, and more complicated bioinformatics datasets. All
the experiments are performed on a server with Xeon(R) X5460 3.16GHz processor and
32766MB RAM.

6.1 Experiments on Common Datasets

Ten common-used datasets are used for experiments, including two datasets Wdbc (569, 30)
and Spambase (4601, 57) from UCI Machine Learning Repository, seven datasets Diabetis
(768, 8), German (1000, 20), Titanic (2201, 3), Image (2310, 18), Waveform (5000, 21),
Banana (5300, 2), Ringnorm (7400, 20) from IDA database [45], and one handwritten digits
dataset USPS (11000, 256), where the number and dimension of samples are listed in the
bracket.

For the UCI and IDA datasets, we randomly divide the samples into two non-overlapping
training and testing sets which contain almost half of samples in each class. For the USPS
dataset, we classify odd vs. even digits, and randomly select 50 samples in each digit to form
training set as well as the remaining as testing set. The processes are repeated twenty times to
generate twenty independent runs for each dataset, and then the average results are reported.

We firstly compare the single kernel models, that is, the proposed Primal IKSVM with
classical PD kernel SVM and five popular indefinite methods Clip [43], Flip [15], Shift [47],
Dual IKSVM [7] and ESVM [35]. SVM is also used to the subsequent classifier in Clip, Flip
and Shift. The parameter λ is fixed to 0.01, which refers to the setting in SimpleMKL [44].
The indefinite Sigmoid and Gausscombination kernels [38] are applied, whose candidate
kernel parameter sets are {2−6, 2−5, ..., 25, 26} and {0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} as in
[44] respectively. The PDGaussian kernel is used in SVMwhose candidate kernel parameter
set is the same as Gausscombination kernel’s.

Table 2 reports the detailed experimental results of the seven algorithms. On each dataset,
the mean classification accuracies as well as the standard deviations of each algorithm are
recorded, where the best results are highlighted in bold and italic face. Their average accu-
racies and standard deviations on all datasets are also reported. Furthermore, to statistically
measure the significance of performance difference, pairwise t tests at 95% significance level
are conducted between the algorithms. Specifically, whenever Primal IKSVM achieves sig-
nificantly better/worse performance than the compared algorithm on any dataset, a win/loss
is counted and a marker •/◦ is shown. Otherwise, a tie is counted and no marker is given.
The resulting win/tie/loss counts for Primal IKSVM against the compared algorithms are
provided in the last line of the table.
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From the table, we can see that Clip, Flip and Shift perform poorly on most datasets,
which indicates that the simple spectrum transformation in fact can not solve the complex
indefinite kernel problems effectively. Dual IKSVM seeks a proxy PD kernel to approximate
the indefinite one and can achieve better performance than Clip, Flip and Shift on some
datasets, such as Diabetis and German. But it is still worse than Primal IKSVM on most
datasets, specifically its accuracies are lower than Primal IKSVM’s close to 20% on the
Image and Banana datasets. ESVM tries to obtain a stationary point in the Kreı̌n space.
Primal IKSVM is superior to ESVM on most UCI and IDA datasets. Especially on USPS
dataset, the classification accuracy of IKSVM is higher than that of ESVM close to 21%.
Primal IKSVM directly solves the non-convex indefinite kernel SVM problem from the
primal and thus precedes the compared indefinite kernel algorithms on five datasets, whose
average accuracy excels the other ones beyond 3%. Furthermore, it ties with classical PD
kernel SVM. The corresponding statistical t tests verify our conclusions.

We further evaluate the proposed twomultiple indefinite kernel models PrimalMIKSVM-
1 and Primal MIKSVM-2 on the datasets. Due to the scarcity of related works, we compare
them with two successful multiple PD kernel methods SimpleMKL [44] and PrimalMKL
[21], and onemultiple indefinite kernelmethodMixnorm [29]. For SimpleMKL, PrimalMKL
and Primal MIKSVM-2, the PD Gaussian and Polynomial kernels are used as base kernels,
where the candidate kernel parameter sets are {0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} and {1, 2, 3}
respectively. Mixnorm and Primal MIKSVM-1 utilize both the PD Gaussian and Polynomial
kernels and the indefinite Sigmoid and Gausscombination kernels as base kernels. The posi-
tive constant c in Primal MIKSVM-2 is set to 1. Another parameter settings are the same as
the above single kernel scenarios.

Table 3 presents the average classification results of the compared algorithms. On most
datasets, Primal MIKSVM-1 and Primal MIKSVM-2 significantly outperform the PD kernel
methods SimpleMKL and PrimalMKL. Especially on the Image and USPS datasets, their
accuracies exceed the ones of SimpleMKL and PrimalMKL beyond 5%. Primal MIKSVM-1
and Primal MIKSVM-2 also greatly excel Mixnorm, whose accuracies are sometimes even
worse than those of the two models over 20%. Furthermore, comparing Primal MIKSVM-
1 and Primal MIKSVM-2 themselves, their average accuracies are basically comparable
except on the USPS dataset. The reason may be that the data in USPS are more suitable
for the indefinite Sigmoid kernel, which further validates the dominance of using indefinite
kernels in real world applications.

6.2 Experiments on Bioinformatics Datasets

To further investigate the effectiveness of our models, we verify their performance on
more complicated bioinformatics datasets, including two DNA datasets DNA_large and
DNA_small [44], and three biological datasets PSortPos, PSortNeg and Plant [30] (originally
in [59]). They are all multi-class datasets which contain either three, four or five classes. For
each dataset, we select two balanced classes for experiment. As above, we randomly divide
the samples into two non-overlapping training and testing sets which have almost half of
samples in each class. The kernel selections and parameter settings are the same as above.
Specially, for three biological datasets, we use the 69 sequence kernels given in the database
where more than half of them are indefinite kernels.

The classification results are shown in Tables 4 and 5 corresponding to single and multi-
ple kernel scenarios respectively. In the single kernel scenarios, Primal IKSVM statistically
wins the other six algorithms on most datasets. In particular, its accuracy is ahead of the
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Table 3 Classification result (mean±SD) of multiple kernel models on the ten datasets

Dataset Classification accuracy

SimpleMKL PrimalMKL Mixnorm Primal MIKSVM-1 Primal MIKSVM-2

Wdbc 95.97±0.11• 96.54±0.12• 90.40±0.20• 96.98±0.09 97.52±0.09

Spambase 88.69±0.08• 90.10±0.07• 75.20±0.65• 91.84±0.06 93.84±0.05

Diabetis 75.53±0.18• 76.88±0.17 72.00±0.36• 77.02±0.17 75.89±0.20

German 70.07±0.03• 74.09±0.15• 70.80±0.14• 75.43±0.10 73.52±0.20

Titanic 78.09±0.07• 77.41±0.08• 77.10±0.51• 78.77±0.06 79.01±0.07

Image 87.65±0.09• 88.67±0.13• 75.60±0.35• 92.44±0.10 96.76±0.05

Waveform 89.96±0.08• 90.64±0.04• 70.60±0.19• 91.34±0.05 90.61±0.05

Banana 89.99±0.05 89.53±0.19 81.60±0.36• 90.37±0.05 90.39±0.04

Ringnorm 98.26±0.02 97.94±0.05• 74.60±0.31• 98.51±0.02 98.39±0.02

USPS 87.66±0.06• 87.01±0.07• 65.38±0.26• 92.07±0.13 81.01±0.64

Average 86.19±0.08 86.88±0.11 75.33±0.33 88.48±0.08 87.69±0.14

Win/tie/loss 8/2/0 8/2/0 10/0/0 / /

Bold indicates best performance
• Our model is significantly better than the corresponding methods on the criterion based on the t test at 95%
significance level

other ones close to 3% on the PSN dataset. Furthermore, in the multiple kernel scenarios,
Primal MIKSVM-1 and Primal MIKSVM-2 also show much better performance than the
compared algorithms, where their superiority is more significant on three biological datasets.
Concretely, unlike SimpleMKL and PrimalMKL that only use PD kernels, PrimalMIKSVM-
1 can utilize both PD and indefinite base kernels given in the database effectively and thus
possess the best accuracies on all the three datasets. Especially on the PSP and PSN datasets,
it excels the two PD kernel methods close to 5%. Mixnorm can also employ all base ker-
nels, however, it still performs poorly due to the instability of the algorithm itself. Primal
MIKSVM-2 is likewise worse than Primal MIKSVM-1, since that it is in nature designed
to solve the non-convex combination of PD kernels and thus only uses the given PD base
kernels which are far from enough to characterize the samples in the complex biological
problems.

We further empirically evaluate the convergence properties of our proposed models. In
each dataset, we plot the variations on the classification accuracies and objective values of the
formulations in (13), (20) and (21). The corresponding plots are presented in Figs. 1, 2 and 3.
From the figures, we can see that both classification accuracies and objective values in the
three models gradually converge to stable values within twenty iterations. This more likely
suggests that the iterative algorithms can reach localminimayielding acceptable classification
accuracies.

In order to investigate the practical effects of indefinite kernels inmultiple kernel scenarios
more clearly, we also compare the sums of combination coefficients in Primal MIKSVM-1
and Primal MIKSVM-2. The results are shown in Fig. 4. On one hand, Primal MIKSVM-
1 considers the convex combination of base kernels which can be both PD and indefinite
kernels, and thus the sum of combination coefficients corresponding to different kernels
is equal to 1. From Fig. 4a, it is obvious that indefinite base kernels predominate in the
kernel combinations on all the datasets, which indicates that they actually count more with
the learning problems than PD base kernels. Moreover, combining the superiority of Primal
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Table 5 Classification result (mean±SD) of multiple kernel models on the bioinformatics datasets

Dataset Classification accuracy

SimpleMKL PrimalMKL Mixnorm Primal MIKSVM-1 Primal MIKSVM-2

DNA_large 94.97±0.05• 95.23±0.46 76.49±0.40• 95.51±0.48 95.79±1.17

DNA_small 94.06±0.05 92.87±0.57• 76.42±0.55• 94.28±0.61 93.11±2.19

PSP 86.91±0.30• 76.29±0.68• 76.60±0.45• 90.30±0.74 88.14±0.39

PSN 82.35±0.21• 89.15±0.30• 58.80±0.29• 93.09±0.42 84.04±0.54

P 66.39±0.31• 87.29±0.41• 69.40±0.55• 91.34±0.34 81.39±1.55

Average 84.94±0.18 88.17±0.48 71.54±0.45 92.90±0.52 88.49±1.17

Win/tie/loss 4/1/0 4/1/0 5/0/0 / /

Bold indicates best performance
• Our model is significantly better than the corresponding methods on the criterion based on the t test at 95%
significance level
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(a) DNA datasets (b) Biological datasets

Fig. 1 Covergence analysis on Primal IKSVM on the bioinformatics datasets: a two DNA datasets and b three
biological datasets
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(a) DNA datasets (b) Biological datasets

Fig. 2 Covergence analysis on Primal MIKSVM-1 on the bioinformatics datasets: a two DNA datasets and b
three biological datasets

MIKSVM-1 in classification performance, it is sufficient to illustrate the effectiveness and
necessity of using indefinite kernels in MKL to solve complex learning problems. On the
other hand, Primal MIKSVM-2 takes the non-convex combination of PD base kernels into
account, therefore the combination coefficients can be negative.We count the sums of positive
and negative coefficients respectively. For negative coefficients, we report the absolute values
of the sums in Fig. 4b. Although Primal MIKSVM-2 only uses PD base kernels, the kernels
with negative coefficients are likewise dominant in the kernel combinations, which further
validates the effectiveness of indefinite kernels.
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Fig. 3 Covergence analysis on Primal MIKSVM-2 on the bioinformatics datasets: a two DNA datasets and b
three biological datasets
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Fig. 4 Comparison about the sum of combination coefficients in Primal MIKSVM-1 and Primal MIKSVM-2
on the bioinformatics datasets

7 Conclusion

In this paper, we firstly analyze the reasonability of learning indefinite kernel SVM from
primal problem in virtue of duality gap. Then a novel primal indefinite kernel SVMframework
is constructed in the RKKS, which not only derives a single kernel model Primal IKSVM but
also extends to multiple kernel scenarios. Based on different characteristics of base kernels
and combination coefficients, we further propose a generalized MKL framework. From the
framework, we deduce two multiple indefinite kernel models Primal MIKSVM-1 and Primal
MIKSVM-2, where the former emphasizes on the convex combination of indefinite base
kernels, and the latter focuses on the non-convex combination of PD base kernels. Two
PRP conjugate gradient algorithms are presented to solve the non-convex optimizations in
the models. Furthermore, a constructive approach for kernel selection in the algorithms is
developed by virtue of the more general theory of similarity functions. Experimental results
demonstrate the superiority of the proposed models in complex actual applications.

There are several directions for future study:

• Optimization technique In the paper, we apply conjugate gradient technique to solve
the non-convex optimizations in the proposed models, which is widely used in primal
kernel methods. However, these algorithms can only arrive at local minima. How to
develop better non-convex optimization techniques for ourmodels needsmore systematic
research.

• Large-scale problem In the experiments, we utilize the models in the middle-scale clas-
sification problems. However, due to the requirements of the practical applications, the

123



186 H. Xue et al.

large-scale learning problem has become a hot issue in machine learning. Consequently,
how to develop a fast algorithm for our models is another interesting topic for future
study.
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